DMFitFunction

[3]:
# Parameters
func_name = "DMFitFunction"
wide_energy_range = True
x_scale = "log"
y_scale = "log"
linear_range = False

Description

[5]:
func.display()
_ipython_canary_method_should_not_exist_
_ipython_display_
_ipython_canary_method_should_not_exist_
_repr_mimebundle_
_ipython_canary_method_should_not_exist_
_ipython_canary_method_should_not_exist_
_repr_markdown_
_ipython_canary_method_should_not_exist_
_repr_svg_
_ipython_canary_method_should_not_exist_
_repr_png_
_ipython_canary_method_should_not_exist_
_repr_pdf_
_ipython_canary_method_should_not_exist_
_repr_jpeg_
_ipython_canary_method_should_not_exist_
_repr_latex_
_ipython_canary_method_should_not_exist_
_repr_json_
_ipython_canary_method_should_not_exist_
_repr_javascript_
  • description: Class that evaluates the spectrum for a DM particle of a given mass, channel, cross section, and J-factor. Based on standard Fermi Science Tools function DMFitFunction. Note input table only calculated spectra up to m_DM of 10 TeV The parameterization is given by F(x) = 1 / (8 * pi) * (1/mass^2) * sigmav * J * dN/dE(E,mass,i)
  • formula: $$
  • parameters:
    • mass:
      • value: 10.0
      • desc: DM mass (GeV)
      • min_value: None
      • max_value: None
      • unit:
      • is_normalization: False
      • delta: 1.0
      • free: False
    • channel:
      • value: 4.0
      • desc: DM annihilation channel
      • min_value: None
      • max_value: None
      • unit:
      • is_normalization: False
      • delta: 0.4
      • free: False
    • sigmav:
      • value: 1e-26
      • desc: DM annihilation cross section (cm^3/s)
      • min_value: None
      • max_value: None
      • unit:
      • is_normalization: False
      • delta: 1e-27
      • free: True
    • J:
      • value: 1e+20
      • desc: Target total J-factor (GeV^2 cm^-5)
      • min_value: None
      • max_value: None
      • unit:
      • is_normalization: False
      • delta: 1e+19
      • free: False

Shape

The shape of the function.

If this is not a photon model but a prior or linear function then ignore the units as these docs are auto-generated

[6]:
fig, ax = plt.subplots()


ax.plot(energy_grid, func(energy_grid), color=blue)

ax.set_xlabel("energy (keV)")
ax.set_ylabel("photon flux")
ax.set_xscale(x_scale)
ax.set_yscale(y_scale)

../_images/notebooks_DMFitFunction_8_0.png

F\(_{\nu}\)

The F\(_{\nu}\) shape of the photon model if this is not a photon model, please ignore this auto-generated plot

[7]:
fig, ax = plt.subplots()

ax.plot(energy_grid, energy_grid * func(energy_grid), red)


ax.set_xlabel("energy (keV)")
ax.set_ylabel(r"energy flux (F$_{\nu}$)")
ax.set_xscale(x_scale)
ax.set_yscale(y_scale)


../_images/notebooks_DMFitFunction_10_0.png

\(\nu\)F\(_{\nu}\)

The \(\nu\)F\(_{\nu}\) shape of the photon model if this is not a photon model, please ignore this auto-generated plot

[8]:
fig, ax = plt.subplots()

ax.plot(energy_grid, energy_grid**2 * func(energy_grid), color=green)


ax.set_xlabel("energy (keV)")
ax.set_ylabel(r"$\nu$F$_{\nu}$")
ax.set_xscale(x_scale)
ax.set_yscale(y_scale)

../_images/notebooks_DMFitFunction_12_0.png